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Abstract

The Ohno-Wang kinematic hardening rule is modified to incorporate the Burlet—Cailletaud radial evanescence term
for an improved simulation of the ratcheting behavior. The Delobelle parameter ¢’ is implemented in the modified
model to compromise shakedown of the Burlet—Cailletaud hardening rule and over-prediction of the Ohno-Wang
model. An evolution equation is proposed for &' to simulate the ratcheting strain over an extended domain of cycles.
Ratcheting tests were conducted on S45C steel under four types of nonproportional axial-torsional loading. The new
model is found to yield reasonably accurate predictions of ratcheting strain to a much higher number of cycles com-
pared with other studies.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

When structural components are cyclically loaded in the plastic regime, progressive plastics deformation
can occur by a combination of primary (steady) loading and secondary (cyclic) loading. This deformation
behavior is referred to as ratcheting. The ratcheting deformation accumulates continuously with the applied
number of cycles, and it may not cease until failure.

A number of papers review the state of the art of modeling the ratcheting behavior (Chaboche, 1994,
McDowell, 1994; Ohno, 1998; Bari and Hassan, 2000, 2001, 2002). Ratcheting experiments have been
conducted on different materials under various loading conditions (Hassan and Kyriakides, 1992; Jiang and
Sehitoglu, 1994a; Portier et al., 2000). The studies with existing models indicate that simulation of uniaxial
ratcheting primarily depends on the plastic modulus calculation scheme, whereas in multiaxial loading
ratcheting depends essentially on the hardening rule employed in the model (Hassan et al., 1992; Hassan
and Kyriakides, 1994a,b). Several kinematic hardening rules have been proposed for prediction of rat-
cheting under multiaxial loading. The conventional linear kinematic hardening rules such as Prager (1956),
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Nomenclature

deviatoric backstress tensor

incremental deviatoric backstress tensor
magnitude of the incremental plastic strain tensor
unit normal to the yield surface at current stress point
deviatoric stress

Young’s modulus for elasticity

shear modulus

plastic modulus

number of loading cycles

strain tensor

incremental elastic strain tensor

incremental plastic strain tensor

yield surface function

shear strain range

axial stress range

Poisson’s ratio

stress tensor

do incremental stress tensor

09 size of the yield surface

omean ~ Mean of the axial stress cycle
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Ziegler (1959) and Mroz (1967) are inadequate for modeling ratcheting since they produce closed hysteresis
loops. The nonlinear kinematic hardening rule by Armstrong and Frederick (1966) was found to over-
predict ratcheting strain significantly under multiaxial loading. Several authors modified their model by
introducing additional terms (Bower, 1989; Chaboche and Nouailhas, 1989a,b; Chaboche, 1991; Ohno and
Wang, 1993a,b; Jiang and Sehitoglu, 1994a,b; McDowell, 1995). These new nonlinear kinematic hardening
models can describe the hysteresis loop and uniaxial cyclic ratcheting well enough, but cannot predict
multiaxial ratcheting responses satisfactorily. Also, as indicated by Bari and Hassan (2000, 2001), unde-
sirable features in the predicted results of ratcheting strain still persist in most of these models.

Bari and Hassan proposed a modified kinematic hardening rule using the idea of Delobelle et al. (1995)
in the framework of the Chaboche model. Since the Ohno—Wang model is regarded as a most successful,
though still over-predictive, one among available models, this study will use the same constitutive frame-
work and propose an improved kinematic hardening rule that incorporates the Burlet—Cailletaud radial
evanescence term and the Delobelle parameter (&') to control shakedown and over-prediction. An evolution
equation for & will be proposed for correlation over a much larger number of cycles compared with other
models in the literature. Ratcheting tests have been conducted on tubular specimens of S45C steel under the
condition of four types of nonproportional axial-torsional loading. The model results will be compared
with experimental data.

2. Ratcheting experiments

The material used in the study was medium carbon steel S45C (equivalent to AISI 1045 steel), which was
acquired in the form of a round bar with a diameter of 32 mm. The material was held at 850 °C for 30 min
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Table 1

Mechanical properties of S45C steel
a, (MPa) ay (MPa) 7, (MPa) RA(%) 0 (%) E (GPa) G (GPa) v
798 590 320 39 17 205 79 0.298

- 1700 ——

R100.0

Fig. 1. Specimen geometry (dimensions in mm).

and water-quenched. It was then tempered at 600 °C in the furnace for 40 min and cooled in oil. The
chemical composition of the material is (wt.%): C 0.43, Si 0.18, Mn 0.69, P 0.023, S 0.007. The mechanical
properties are shown in Table 1.

The specimen used in this study, given in Fig. 1, has a tubular geometry with outside and inside
diameters of 12.5 and 10 mm, respectively, in the gage section. Tests were conducted on an Instron tension—
torsion machine using an axial-torsional extensometer mounted on the outside of the specimen gage sec-
tion. Strains and stresses were recorded in the personal computer using an automated data acquisition
system. All tests were conducted at room temperature under load control for axial loading and under strain
control for torsional loading. The frequency of cyclic loading was 0.5 Hz. Triangular waveform was em-
ployed in the tests.

The loading paths in the axial stress—shear strain plane (6—) plane) used in ratcheting tests are illustrated
in Fig. 2. The values of controlled parameters are given in Table 2. These tests consist of a constant am-
plitude shear strain cycling under a constant axial load (Case 1), (2) a constant amplitude proportional path
with mean axial stress (Case 2), (3) a 90° out-of-phase path with mean axial stress (Case 3), and (4) a
butterfly path with mean axial stress (Case 4). In all cases the shear strain amplitude was set at 0.866%.

In addition to the four axial-torsional tests, completely reversed, uniaxial and torsional tests were
conducted at several strain amplitudes to obtain the cyclic stress—strain curves.

3. Description of the constitutive model

The total strain increment is decomposed into the elastic and plastic parts:

de = ds + dsp,. (1)
The material is assumed to follow the von Mises yield criterion, which is given by
3 )

flo—a)=|5(s—a): (s—a)| =0y )
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Fig. 2. Loading paths in ratcheting experiments.
Table 2
Summary of ratcheting experiments
Test no. Loading path Ay/2 (%) Ymean (70) Ac/2 (MPa) Omean (MP2) At/2 (MPa)
1 Case 1 0.866 0 0 100 270
2 Case 2 0.866 0 50 50 239
3 Case 3 0.866 0 50 50 260
4 Case 4 0.866 0 50 50 274

where s = 6 — (g4 /3)1 is the deviatoric stress tensor, a is the back stress, and gy is the size of the yield
surface, I is a unit tensor, and the inner product is defined by, e.g. s : t = s;;¢;;.
The plastic flow can be stated as

1
dg, = T (ds : n)n,

where ( ) is the Macauley bracket: (4) = A4 if 4 > 0, (4) = 0 otherwise.
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3.1. The Ohno—Wang model

3.1.1. Model formulation

Ohno and Wang (1993a,b) used a multilinear model in which several kinematic hardening rules of the
Armstrong—Frederick type are superposed. They assumed that each component of back stress «; has a
critical state for its dynamic recovery term to be activated. The Ohno—Wang model can be written as follows:

u 2 %\ " o
a= ) o, da;:y{nds - (’) oz,-<d8 :_'>}7 (4)
21: 30 7 P a

i i

where, a; is the ith component of the deviatoric back stress «, &; is the magnitude of a;, o@; = /3/2a; : a;, 7;
and r; are material constants.

A sufficient number of decomposed hardening rules should be used in the Ohno—Wang model in order to
produce a good representation of the stable uniaxial stress—strain hysteresis loop. In this study, eight de-
compositions are found sufficient.

3.1.2. Parameter determination

Parameters in the Ohno—Wang model are determined from the uniaxial cyclic stress—strain curve. The
loading part of the stress—strain curve is divided into several segments as shown in Fig. 3. The parameters 7,
and r; for each segment can be determined from the following equations:

1 O() — O(i— O(i+1) — O0(i .
Vi =—; v = ( U] Und)) — G @ >Sp(i) for l# 1, (5)
€p(i) Ep(i) — Ep(i-1)  Ep(i+1) — €p(i)

. . . M
and r; is determined using ) | ¥; + 60 = Omax-
In Eq. (5) o(; and &y, denote the stress and plastic strain at the ith point on the stress—plastic strain curve

as indicated in Fig. 3. The exponents, m;, in Eq. (4) are assumed to be the same for all segments and should
be determined from a uniaxial ratcheting experiment, as illustrated in Fig. 4.

E? -1 (M
£ o i V-1
‘@’G(i-l) i-1
(75 2
]
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<
Tg I
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EpmEp(2) Enli-1)€p(i) €p(v1) Ep()
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Fig. 3. Definition of parameters in the Ohno-Wang model from uniaxial stress—strain curve.
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Fig. 4. Determination of parameter m; in the Ohno-Wang model from uniaxial ratcheting experiment.

The Ohno-Wang model parameters used in this study for simulation of multiaxial ratcheting are:

0o =220 MPa, FE =187000 MPa, G =90000 MPa,
Y18 = 2500, 1250, 666.7, 500, 333.3, 200, 125, 83.3,

ris = 88,42,30.4,21.3,28.3,31,27.8,76.4 MPa, m;, =3.7(i = 1,M).

)

3.1.3. Ratcheting simulation

Figs. 5 and 6 show experimental data and the results of simulations based on the Ohno—Wang model and
the above set of parameter values. It has been known in ratcheting studies that the Ohno—Wang model can
describe accurately the uniaxial and torsional hysteretic behavior but over-predicts biaxial ratcheting,
though the degree of over-prediction is smaller than those of the Chaboche model and some modified
models such as McDowell, Jiang and Sehitoglu (Bari and Hassan, 2002). The numerical results of this study
verify again that the Ohno—Wang model does not yield good simulations of biaxial ratcheting. Further-
more, as the strain increases, the components of deviatoric back stress o; reach their respective magnitudes
of r; and the dynamic recovery terms become fully operative. Each of the kinematic hardening rules is then
the same as the Armstrong—Frederick kinematic hardening rule, and the rate of predicted ratcheting strain
becomes constant. Therefore, the Ohno—Wang model cannot simulate the trend of decreasing ratcheting
rates that occur in some experiments.

As indicated by some researchers (Jiang and Sehitoglu, 1996; Bari and Hassan, 2000), the over-pre-
diction of biaxial ratcheting results from the fact that all parameters in the Ohno-Wang model are de-
termined from uniaxial experiments and there is no parameter that can control the biaxial ratcheting
behavior. Bari and Hassan (2002) modified the Chaboche model by adding the Delobelle kinematic
hardening rule (Delobelle et al., 1995) and reported a considerable improvement in correlating multiaxial
ratcheting data. Enlightened by their work, a similar approach has been attempted in this study within the
framework of the Ohno—Wang model, which is outlined in what follows.
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Fig. 6. Comparison of experimental data and predicted data by the Ohno-Wang model for Case 1: (a) shear stress—strain loop and

(b) axial ratcheting strain.

3.2. An improved model

In order to simulate the uniaxial ratcheting experiments, Burlet and Cailletaud (1986) modified the radial

evanescence term in the Armstrong and Frederick (1966) hardening rule in the following form:
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2 o _ zaf_\f@—a)
da—3Cdsp y(a : n)ndp, n—\/;ao_— 3 e (6)

The plastic modulus expression obtained from this hardening rule by satisfying the consistency condition
(f = 0) is the same as that obtained from the Armstrong—Frederick hardening rule under uniaxial loading
condition. The direction of « is the same as that of n, and hence the radial evanescence term (y(e : n)ndp) is
reduced to the dynamic recovery term of the Armstrong—Frederick hardening rule. In addition, since the
simulation of uniaxial ratcheting depends entirely on the calculation scheme of the plastic modulus, these
two rules produce the same results; while for biaxial loading, the radial evanescence term ((a : n)ndp) of the
Burlet—Cailletaud rule essentially yields a tensor along the plastic strain-rate direction, and thus the results
become similar to those of the Prager linear hardening rule that predicts shakedown ratcheting (Bari and
Hassan, 2002). In order to compromise over-prediction of the Ohno-Wang model and shakedown of the
Burlet—Cailletaud model, this study makes use of the Delobelle et al.’s scheme (1995) in the following
manner:

2 7\ " ,
da; = y,{ gr,«dsp - (%> [0'o; + (1 —0")(a; : n)n]<d6p :%>}, i=1,2,...,M, (7)
i
where, 7, ;, m; and & are the same as those of the Ohno-Wang model, Eq. (4). The parameter ¢’ is called
the Delobelle parameter in this study. When §' = 0, the modified hardening rule is reduced to the Burlet—
Cailletaud model that predicts shakedown ratcheting; while 8’ = 1, it reverts to the Ohno—Wang model (see
Fig. 7).

Following the consistency condition (f = 0), the plastic modulus is expressed as follows:

M 2 2/ \™ de, a; 2
H—Zyi{gr,-— g(;) (oc,-.n)<$.a:[> , dp= gdsp.dsp. (8)

1
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Fig. 7. Prediction of ratcheting strain by the modified model with different values of &'
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From Eq. (8) one can see that the plastic modulus expression (/) does not include &'. Therefore, it can be
stated that &' can only be determined from a biaxial ratcheting response, that is to say, ¢’ can influence
biaxial ratcheting responses without any effect on the plastic modulus and uniaxial ratcheting responses. It
also implies that all of the parameters of the Ohno—-Wang model can be used with the modified hardening
rule.

The simulations with the modified model using a constant &’ are presented in Fig. 7. The modified model
appears to simulate the biaxial ratcheting response reasonably well with a proper choice of ¢’ for a relatively
low number of cycles. However, as observed in Fig. 8(a), the ratcheting strain rate tends to be decreasing
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Fig. 8. Comparison of experimental ratcheting strain with predictions by the modified model with evolutionary &' (a) Case 1, (b) Case

2, (c) Case 3 and (d) Case 4.
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with the increasing number of cycles. The modified model with a constant §' cannot reflect this trend very
well as the number of cycles becomes large. From numerical computations and the results shown in Fig. 7, a
conclusion can be drawn that the smaller ¢', the smaller the ratcheting strain rate of the model prediction
becomes. In order to provide a decreasing ratcheting strain rate with the increasing number of cycles, it is
necessary to generate an evolution function for §' monotonically decreasing with the number of cycles. An
evolution function of ¢ is proposed as follows:

do’ = (8., — 0')dp, 9)

where &, is the saturated value of 6’ and f is an evolution coefficient.

The initial value of &' is denoted by &;. The value of & is sensitive to the slope of ratcheting strain at
large cycles, J;, is closely related to the ratcheting rates of initial cycles, and f decides the evolution of the
ratcheting strain rate. The values of J,, §, and 8 can be estimated from the biaxial ratcheting curves, say
Fig. 8(a). For medium carbon steel S45C, these values were taken as: d,, =0, J, = 0.18, B =0.16. The
effects of J.,, J, and f on the ratcheting strain rate are further discussed in a separate paper (Chen and Jiao,
submitted for publication).

The proposed kinematic hardening rule has been used in this study with the evolution equation for ¢’ and

the parameter values of the Ohno—-Wang model given earlier.

4. Results and discussion

The modification on the Ohno-Wang model made in this study is not effective for uniaxial ratcheting
since the radial evanescence term is reduced to the dynamic recovery term of the Armstrong and Frederick
(1966) hardening rule. The uniaxial ratcheting prediction was satisfactory to 300 cycles (see Fig. 4) with
m; = 3.7, however the model increasingly overpredicted actual ratcheting after that; for instance 30% off at
400 cycles.

Ratcheting Strain(%)
Ratcheting Strain(%)

0
| T I T I T I T |
0 200 400 600 800 0 200 400 600 800
(a) Number of Cycles (b) Number of Cycles

Fig. 9. Ratcheting strain for different loading paths with the same mean stress and amplitude of torsional strain: (a) experiments and
(b) predictions.
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The ratcheting predicted by the modified model under biaxial loading was compared with experimental
data for Cases 1-4 in Fig. 8. It is found that predictions are in reasonably good agreement with experi-
mental data. It is remarked here that the correlation lasted to a large number of cycles close to the ter-
mination of the tests, while currently available models have been validated only for a relatively small
number of cycles. For Case 1, from which the new parameter §' has been determined, the agreement is
naturally found best. However, other cases are also found in good correlation when compared with other
multiaxial ratcheting studies.

A comparison of experimental ratcheting strain for the three tests with the same mean axial stress and
amplitude of torsional strain, Cases 2-4, shows the effect of loading paths on the ratcheting strain (Fig.
9(a)). The numerical results in Fig. 9 (b) for the corresponding cases indicate that the modified model can
also predict the order of magnitudes of the ratcheting strain correctly under different loading paths. Pre-
dictions of the cyclic shear stress—strain response and the axial vs. shear stress response under nonpro-
portional loading of Case 3 are shown in Fig. 10. Fig. 11 gives the axial vs. shear stress loops for Case 4.
The good agreement with experimental data in these figures demonstrates that the modified model can
simulate multiaxial responses under axial-torsional loading, which helps validate rationality of the pro-
posed plasticity model incorporating ratcheting responses.

McDowell (2000) attributed existing plasticity models’ poor predictive capability to not accounting for
microstructural deformation mechanisms. Bari and Hassan (2001) suggested that it would be needed to
introduce anisotropy into the yield surface to enhance the predictive capability of ratcheting strain beyond
the current assumption of invariant yield surface shape. Vincent et al. (2002) introduced a distortion model
of subsequent yield surfaces into nonlinear kinematic hardening constitutive equations to describe multi-
axial ratcheting.

While the approach taken in this paper may be considered as substantial improvement of ratcheting
simulation, efforts are certainly needed for more reliable predictions. The materials and loading conditions
used to verify the present model are limited. More comprehensive verification remains as a future work.
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Fig. 10. Comparison of predicted and experimental data for Case 3: (a) shear stress—shear strain response and (b) axial stress—shear
stress response.
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Fig. 11. Axial vs. shear stress response in the first 10 cycles for Case 4: (a) experiment and (b) prediction.

5. Conclusions

Ratcheting tests were conducted on S45C steel for four nonproportional loading paths. A modified
kinematic hardening rule that incorporates the Burlet—Cailletaud hardening rule and the Delobelle pa-
rameter & within the framework of the Ohno—Wang model has been proposed. All parameters except ¢’ of
the modified model are the same as those of the Ohno-Wang model. ' may be considered as a constant to
describe the ratcheting responses at a relatively small number of cycles. In order to improve the simulation
of ratcheting responses at large cycles, an evolution equation for &’ has been introduced. Material constants
in the evolution equation can be determined from a biaxial ratcheting response, an example of which has
been given in this study. Ratcheting simulations for the four types of loading paths are in good agreement
with experimental data over a large number of cycles. The results indicate that the proposed model is a
substantial improvement of multiaxial ratcheting prediction methods currently available in the literature.
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